Synthetic Conversion of ACAT Inhibitor to Acetylcholinesterase Inhibitor

Rika Obata, Toshiaki Sunazuka, Kazuhiko Otoguro, Hiroshi Tomoda, Yoshihiro Harigaya and Satoshi Ōmura*

Research Center for Biological Function, The Kitasato Institute and Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8642, Japan

Received 24 January 2000; accepted 31 March 2000

Abstract—Natural product acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor pyripyropene A was synthetically converted to acetylcholinesterase (AChE) inhibitor via heterolitic cleavage of the 2-pyrone ring, followed by γ-acylation/cyclization with several aroyl chlorides. The 4-pyridyl analogue selectively showed AChE inhibitory activity ($IC_{50} = 7.9 \,\mu M$) and no ACAT inhibitory activity $IC_{50} = >1000 \,\mu M$. © 2000 Elsevier Science Ltd. All rights reserved.

Acetylcholinesterase (AChE) inhibitors such as tacrine¹ and E2020² have been proposed as therapeutic agents for Alzheimer's disease. Recently, we found the arisugacins A (1) and B (2),³ strongly inhibit AChE with IC₅₀ values of 1 and 26 nM, respectively (Fig. 1). Structurally related territrem B (3),⁴ found by Ling et al., is also a potent AChE inhibitor. Interestingly, arisugacins have similar structures to pyripyropene A (4), Scheme 1⁵ which was reported as acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor. However, 4 does not show any AChE inhibitory activity and 1 does not inhibit ACAT, and vice versa.

Since 4 is available in the gram scale, the pyridine moiety of 4 was synthetically converted to 3,4-*di-O*-methoxy-substituted benzene ring as 1 to confirm the possibility

for development of new AChE inhibitor from **4**. The advantage of this procedure is that absolute stereochemistry of analogues is identified as **4**. The 2-pyrone ring of **4** was cleaved by our method,⁶ following γ -acylation/cyclization⁷ with production of **6a**. Three hydroxyl groups of **6a** were acetylated (**6b**), and the carbonyl moiety was reduced (**6c**) (Scheme 1).

The AChE (from human erythrocytes) inhibitory activity was determined by our method. Similar to starting material **4**, **6b** and **6c** did not show AChE inhibitory activity at 100 μ M; however, **6a** showed marginal inhibition (Table 1). Furthermore, several analogues (**7a**–**13a**)⁷ were not showing ACAT inhibitory activity at >1000 μ M, but among them, 4-pyridyl analogue **13a** inhibited AChE with an IC₅₀ value of 7.9 μ M.

Figure 1.

*Corresponding author. Tel.: +81-3-3444-6161; fax: +81-3-3444-6197; e-mail: omura-s@kitasato.or.jp

0960-894X/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: \$0960-894X(00)00218-3

Scheme 1.

Table 1.

6a OME 58 10a 101 OFFICIAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTA	Tuble 1.						
6a 58 10a 101 OME 70 11a			Ar	AChE inhibitory activity (IC _{50,} μM)		Ar	AChE inhibitory activity (IC ₅₀ , μM)
7a 70 $11a$ 80 80	но	6a		58	10a		101
HO OH 8a >93 12a 80		7a	OMe	70	11a	$ \bigcap_{N} $	35
9a 99 13a N 7.9		8a	OMe	>93	12a		80
		9a		99	13a	N	7.9

We simulated the three-dimensional view of 1 docking with AChE⁸ in the collaboration with Dr. Itai. As a result, 1 is properly buried along the long and narrow cavity of the enzyme. Supposing that 6a–13a can fill a similar position of the AChE active site as 1, the 3-O-methoxy group of the benzene ring of 1 does not covalently bind to AChE, but the aromatic ring may interact with the hydrophobic gorge. From these results, 4 is able to be converted to develop a new selective AChE inhibitor.

Acknowledgements

We are grateful to Professor A. B. Smith, III and Dr. Itai for useful discussion and comments. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan.

References and Notes

1. Summers, W. K.; Majovski, L. V.; Marsh, G. M.; Tachiki, K.; Kling, A. *New Engl. J. Med.* **1986**, *315*, 1241.

- 2. (a) Sugimoto, H; Imura, Y.; Yamanishi, Y.; Yamatsu, K. *J. Med. Chem.* **1995**, *38*, 4821. (b) Gubernator, K.; Böhm, H. -J. In *Structure-Based Ligand Design*; Mannhold, R.; Kubibyi, H.; Timmerman, H., Eds.; Wiley-VCH: Germany, 1998; Methods and Principles in Medicinal Chemistry Vol. 6, pp 15–36.
- 3. (a) Ōmura, S.; Kuno, F.; Otoguro, K.; Sunazuka, T.; Shiomi, K.; Masuma; R.; Iwai, Y. *J. Antibiot.* **1995**, *48*, 745. (b) Kuno, F.; Otoguro, K.; Shiomi, K.; Iwai, Y.; Ōmura, S. *J. Antibiot.* **1996**, *49*, 742. c) Kuno, F.; Shiomi, K.; Otoguro, K.; Sunazuka, T.; Ōmura, S. *J. Antibiot.* **1996**, *49*, 748
- 4. Hseu, T. H.; Yang, C. K.; Ling, K. H.; Wang, C. J.; Tang, C. P. Cryst. Struct. Comm. 1982, 11, 199.
- 5. (a) Õura, S.; Tomoda, H.; Kim, Y. K.; Nishida, H. J. *J. Antibiot.* **1993**, *46*, 1168. (b) Tomoda, H.; Kim, Y. K.; Nishida, H.; Masuma R.; Õura, S. *J. Antibiot.* **1994**, *47*, 148. (c) Tomoda, H.; Nishida, H.; Kim, Y.K.; Obata, R.; Sunazuka, T.; Õura, S.; Bordner, J.; Guadliana, M.; Dormer, P.G.; Smith, A. B. III *J. Am. Chem. Soc.* **1994**, *116*, 12097
- 6. Obata, R.; Sunazuka, T.; Tian, Z.; Tomoda, H.; Harigaya, Y.; Ōmura, S.; Smith, A. B. III *Chem. Lett.* **1997**, 935.
- 7. Obata, R.; Sunazuka, T.; Tian, Z.; Tomoda, H.; Harigaya, Y.; Ōmura, S. *J. Antibiot.* **1997**, *50*, 229.
- 8. (a) Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. *Science* **1991**, *253*, 872. (b) Kryger, G.; Silman, I.; Sussman, J. L. *J. Physiology (Paris)* **1998**, *92*, 191.
- 9. Otoguro, K.; Kuno, F.; Ōmura, S. *Pharmacol. Ther.* **1997**, 76, 45.